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Localizing human brain functions is a long-standing goal in
systems neuroscience. Toward this goal, neuroimaging studies
have traditionally used volume-based smoothing, registered data
to volume-based standard spaces, and reported results relative to
volume-based parcellations. A novel 360-area surface-based corti-
cal parcellation was recently generated using multimodal data
from the Human Connectome Project, and a volume-based version
of this parcellation has frequently been requested for use with
traditional volume-based analyses. However, given the major
methodological differences between traditional volumetric and
Human Connectome Project-style processing, the utility and in-
terpretability of such an altered parcellation must first be estab-
lished. By starting from automatically generated individual-subject
parcellations and processing them with different methodological
approaches, we show that traditional processing steps, especially
volume-based smoothing and registration, substantially degrade
cortical area localization compared with surface-based approaches.
We also show that surface-based registration using features
closely tied to cortical areas, rather than to folding patterns alone,
improves the alignment of areas, and that the benefits of high-
resolution acquisitions are largely unexploited by traditional volume-
based methods. Quantitatively, we show that the most common
version of the traditional approach has spatial localization that is
only 35% as good as the best surface-based method as assessed
using two objective measures (peak areal probabilities and “captured
area fraction” for maximum probability maps). Finally, we demon-
strate that substantial challenges exist when attempting to accurately
represent volume-based group analysis results on the surface,
which has important implications for the interpretability of studies,
both past and future, that use these volume-based methods.

cross-subject alignment | neuroimaging analysis | blurring |
CIFTI grayordinates | standard space

Since the 19th century, neuroscientists have tried to relate
human behavior to particular functionally specialized regions

within the brain. Meaningful correlations between brain function
and anatomy were first achieved by postmortem mapping of lesion
locations in subjects having specific behavioral deficits in life
(reviewed in ref. 1). Neuroanatomists later began subdividing the
cerebral cortex into distinct areas based on cytoarchitecture (e.g.,
ref. 2) and myeloarchitecture (reviewed in ref. 3) with the hope
that well-defined brain areas could be assigned specific behavioral
functions.
When noninvasive methods for mapping human brain function

became available, first with PET (e.g., ref. 4) and then fMRI
(e.g., ref. 5), it also became desirable to establish spatial corre-
spondence across individuals and studies using standard stereo-
tactic coordinate spaces, borrowing an idea from neurosurgical
practice. Brodmann’s parcellation (2) became especially popular
in the neuroimaging community, not necessarily because it was the
best, but because Talairach and Tournoux demarcated the ap-
proximate locations of Brodmann areas in their standard space
(6), which was then mapped to the population average Montreal
Neurological Institute (MNI) space (7).
An early and still widely used method for assessing statistical

significance in functional brain imaging, statistical parametric

mapping using Gaussian random-field theory requires volumetric
smoothing to satisfy its underlying assumptions (e.g., ref. 8),
resulting in the widespread adoption of smoothing in brain-
imaging studies. Spatial smoothing has the seductive side effect
of increasing the statistical significance of weak effects in small
sample sizes, but at the expense of spatial localization precision
(9, 10). Traditionally, smoothed group functional activations are
then statistically thresholded and summarized by single 3D co-
ordinates that may be assigned Brodmann’s areas or gyral and
sulcal designations. Unfortunately, these standard coordinates
are imprecisely related to the underlying functional neuroanat-
omy—the cortical areas—whose neuronal populations generate
the functional activations under study (9, 10).
Besides the reductions in precision from spatial smoothing and

representing brain functional neuroanatomy with single 3D co-
ordinates, another key issue is the approach used for cross-
subject alignment. Because of the high degree of individual
variability in cortical folding patterns, and in the location of
many areal boundaries relative to folds (11, 12), traditional
volume-based methods for aligning cortical areas are imprecise
across much of the cerebral cortex (9). Progress in character-
izing the functions of brain areas has been impeded by these
factors, along with the distributed nature of many brain func-
tions and the lack of an accurate map of human cortical areas.

Significance

Most human brain-imaging studies have traditionally used
low-resolution images, inaccurate methods of cross-subject
alignment, and extensive blurring. Recently, a high-resolution
approach with more accurate alignment and minimized blur-
ring was used by the Human Connectome Project to generate a
multimodal map of human cortical areas in hundreds of indi-
viduals. Starting from these data, we systematically compared
these two approaches, showing that the traditional approach
is nearly three times worse than the Human Connectome Pro-
ject’s improved approach in two objective measures of spatial
localization of cortical areas. Furthermore, we demonstrate
considerable challenges in comparing data across the two ap-
proaches and, as a result, argue that there is an urgent need for
the field to adopt more accurate methods of data acquisition
and analysis.
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Surface-based approaches enable more precise spatial locali-
zation than traditional volume-based approaches (9), and have
been in use for some time, particularly in studies of the visual
cortex (13–15).
The recently reported HCP-MMP1.0 multimodal cortical

parcellation (https://balsa.wustl.edu/study/RVVG) contains 180
distinct areas per hemisphere and was generated from hundreds
of healthy young adult subjects from the Human Connectome
Project (HCP) using data precisely aligned with the HCP’s
surface-based neuroimaging analysis approach (16). Each cortical
area is defined by multiple features, such as those representing
architecture, function, connectivity, or topographic maps of visual
space. This multimodal parcellation has generated widespread in-
terest, with many investigators asking how to relate its cortical areas
to data processed using the traditional neuroimaging approach.
Because volume-registered analysis of the cortex in MNI space is
still widely used (17), this has often translated into concrete re-
quests, such as: “Please provide the HCP-MMP1.0 parcellation in
standard MNI volume space.” Here, we investigate quantitatively
the drawbacks of traditional volume-based analyses and document
that much of the HCP-MMP1.0 parcellation cannot be faithfully
represented when mapped to a traditional volume-based atlas.
There are four key differences between the traditional volume-

based neuroimaging approach and the HCP-style approach (for
details, see ref. 9): (i) Spatial resolution of images: The HCP
acquired structural images (T1w and T2w) at 0.7-mm isotropic
resolution (higher than the typical 1-mm acquisition) and used
FreeSurfer’s cortical segmentation algorithms (reviewed in ref. 18)
for robust, high-quality cortical surface models (19). For fMRI,
the HCP acquired data at 2-mm isotropic resolution, better than
the mean cortical thickness [2.6 mm, range 1.6–4 mm (9)],
whereas fMRI is traditionally acquired more coarsely (typically 3-
to 4-mm isotropic). (ii) Distortion correction: The HCP-style
approach corrects fMRI data for distortion induced by inhomo-
geneity in the main (B0) magnetic field using a field map, which is
often neglected in the traditional approach, leading to a mismatch
between the fMRI and anatomical data. (iii) Spatial smoothing:
The HCP-style approach keeps spatial smoothing to a minimum,
instead averaging within parcels when appropriate to improve
statistical sensitivity and power. The traditional approach uses
extensive volume-based spatial smoothing to increase statis-
tical significance, satisfy statistical assumptions, and strive to
compensate for imperfect cross-subject alignment. (iv) Cross-subject
alignment: The HCP-style approach gently initializes alignment
of cortical areas on the surface using cortical folding patterns
and then aligns areas across subjects using “areal features”
(cortical myelin content, resting-state networks, and resting-state
topographic maps) that are more closely related to areal
boundaries than are structural image intensities in the volume
(9) or, to a lesser extent, folding patterns on the surface (20, 21).
The resulting standard space is a CIFTI “grayordinates” space
that contains both cortical surface vertices and subcortical gray
matter voxels (19). In contrast, the traditional volume-based
approach strives for alignment using linear or nonlinear volume-
based registration of structural image intensities to a standard volume
space (reviewed in ref. 22). The HCP-style approach of surface-
based alignment grew out of earlier methods that used only folding
patterns (12, 23–26) and that, together with surface-based smoothing
(e.g., ref. 27), represent intermediate approaches sharing several
advantages with the HCP-style approach over the traditional volume-
based approach.
We use individual-subject cortical parcellations from the

HCP-MMP1.0 generated by an automated areal classifier (16) as
a “silver standard” (Discussion and SI Appendix, Supplemental
Discussion D4) to illustrate and quantify the impact of key ac-
quisition and analysis choices on the spatial localization of cor-
tical areas. The individual subject parcellations were derived
from each subject’s multimodal imaging data in a spatially ag-

nostic manner, and we use a validation group of subjects that share
no family relationships with the subjects used for parcellation or
classifier training.* These steps minimize concerns about possible
circularity in our analysis strategy (Discussion and SI Appendix, Sup-
plemental Discussion D1). Projecting the individual parcellations into
volume space using each subject’s own surfaces results in a voxel-wise
map of each area in each subject, based on that subject’s multimodal
data. We use these maps to simulate the effects of different analysis
strategies on the degree of spatial overlap of cortical areas across
subjects and their arrangement in group averages. The degree to
which each analysis approach differs from the HCP-style approach
serves as a proxy for what would happen to any neuroanatomically
organized dataset if analyzed in a similar way (e.g., an fMRI study, a
structural MRI study, etc.). We also include intermediate approaches
that use surface registration based on folding alone instead of areal
features gently initialized by folding, or use substantial smoothing on
the cortical surface. Finally, we illustrate the pitfalls of mapping re-
sults from traditional volume-analyzed group-average data onto the
surface. Overall, we hope that a deeper appreciation of these issues
will accelerate the community’s migration away from traditional
analyses and toward HCP-style analyses.

Results
Comparing Areal-Feature–Based Surface Registration to Traditional
Volume Alignment of Cortical Areas: Probabilistic Maps of Cortical
Areas. We used binary regions of interest (ROIs) from the
classifier-based individual parcellations (16) of each of the
210 validation subjects to compute probabilistic maps of each
cortical area (i.e., cross-subject averages of the 210 individual
subject classifications of each area) (SI Appendix, Supplemental
Methods M1). For the volume-based analyses, individual cortical
areas were mapped back to the volume using individual subject
surfaces, reversing the process by which the data were originally
brought on to the surface (SI Appendix, Supplemental Methods
M2 and M3). Fig. 1 shows probabilistic maps of five exemplar
areas spanning a range of peak probabilities. Each area is shown
as localized by areal-feature–based surface registration (MSMAll)
(Fig. 1, Lower, Center), and as localized by volume-based methods
(FNIRT, parasagittal volume slices). One area (3b in Fig. 1) has a
peak probability of 0.92 in the volume (orange, red), whereas the
other four have volumetric peak probabilities in the range of 0.35–
0.7 (blue, yellow). Notably, the peak probabilities of these five
areas are all higher on the surface (Fig. 1, Lower, Center) (range
0.90–1) than in the volume, indicating that MSMAll nonlinear
surface-based registration provides substantially better functional
alignment across subjects than does FNIRT nonlinear volume-
based registration.
In Fig. 2A, the scatterplot shows that surface peak probabili-

ties are almost exclusively higher and have many more areas with
peaks at 100% (54 of 360 on the surface versus only 3 in the
volume). Peak volume probabilities have a mean of 0.70 and a
SD of 0.17, whereas the peak surface probabilities have a much
higher mean (0.94) and a lower SD (0.06). Only 5 of the 360
areas (R_AAIC, R_EC, L_AAIC, L_PoI1, and L_MBelt) have a
higher peak value in the volume than on the surface (those below
the gray line), and for these the differences are very small. No-
tably, most of these areas are in locations with good folding-based
alignment but relatively poor fMRI signal-to-noise ratio (SNR)
(which likely reduces the accuracy of MSMAll areal-feature–
based alignment).

*The only spatial constraint was that the classifiers were applied within searchlights that
were large (30 mm in all directions from the group areal definition) relative to the size
and variability of cortical area positions in arealfeature–based aligned data. Parcellation
regularization steps that occurred after areal classification (dilation, remove islands, and
so forth) used only local distance and vertex neighbor information.
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The peak areal probability only represents information at a
single vertex or voxel for each area. To better measure the
probabilistic spatial spread of each area, we measured the pro-
portion of each area’s vertices or voxels across all individuals that
were contained within the group definition of the area, simulating
the application of the group parcellation to the data (SI Appendix,
Supplemental Methods M3 and M7). This measure is derived from
the idea that each cortical gray matter area will in some situations
generate a distinctive “signal” relative to other areas that is common
across individuals (i.e., fMRI timeseries, myelin content, and so
forth). We use this concept for evaluating and comparing methods
by asking what proportion of the individuals’ simulated signal
overlaps with (or is “captured” by) the surface-based and volume-
based group areal definitions [from the maximum probability map
(MPM)] (SI Appendix, Supplemental Methods M6). Both the surface-
based and volume-based measures use the same per individual
volume files to define the simulated signal.
Fig. 2B shows the fraction of the areal signal that lies within

the group areal definitions, for both volume and surface. Several
different resolutions are simulated, including when the data are
acquired with 2-mm voxels (blue dots, simulating data acquired
with HCP-style high-resolution fMRI), 0.7-mm voxels (red dots,
simulating data acquired at HCP-style structural resolution, such
as myelin maps, or ultrahigh-field fMRI), or 4-mm voxels (green

dots, simulating data acquired with “legacy” low-resolution
fMRI). In the figure, gray lines connect each area between its 4-,
2-, and 0.7-mm values, revealing how much each method benefits
from increases in resolution. This measure is universally higher in
MSMAll-aligned surface-based processing than in FNIRT-aligned
volume-based processing, with very few areas even approaching
equivalence. The median across areas of the surface MPM-captured
fraction is 0.56 for simulated 2-mm acquisition resolution, vs.
0.37 for the volume MPM-captured fraction. For simulated 0.7-mm
acquisition resolution, the median of the surface-captured fraction
increases to 0.67, vs. 0.41 for volume-based methods, suggesting that
higher spatial resolution preferentially benefits surface-based anal-
yses. For simulated 4-mm acquisition resolution, the median of the
surface-captured fraction is lower (0.43) as expected, but it remains
higher than for volume-based methods (0.29), demonstrating
benefits of surface-based analyses even for low-resolution, legacy
fMRI data [indeed surface-based at 4 mm (0.43) still outperforms
volume-based at 0.7 mm (0.41)]. Thus, compared with areal-
feature aligned surface-based analyses, an individual’s areal sig-
nal in volume-based analyses is much more likely to be located
outside of the group areal definition. Indeed, on average much
less than half of the signal lies inside the group areal definition in
volume-based analyses, even before accounting for the smoothing
that is traditionally done (see Effects of Spatial Smoothing in the
Volume and on the Surface, below).

Comparing Areal-Feature–Based Surface Registration to Traditional
Volume Alignment of Cortical Areas: Areal Uncertainty. We used
binary ROIs of the individual parcellations from each of 210
subjects to compute MPMs for each cortical area and for the
noncortical tissue domains (“outside pial” and “inside white”)
after processing via different approaches (SI Appendix, Supple-
mental Methods M1–M3, M6, and M8). As an objective measure
of the quality of spatial alignment, we computed “uncertainty
maps,” where the uncertainty value equals 1 minus the maximum
probability value at each vertex or voxel. Fig. 3 shows the un-
certainty measure computed for areal-feature–based surface
registration (MSMAll SBR) (Fig. 3A) and for selected para-
sagittal slices of the FNIRT volume-based registration (FNIRT
VBR) (Fig. 3C). The uncertainty values for MSMAll SBR are
strikingly lower (better) and more consistent than those for
FNIRT VBR. For MSMAll SBR, about half of cortex (49.6%)
has uncertainty values less than 0.2 (maximum single area
probability >0.8), and only a small percentage of the cortex has

Fig. 1. Probabilistic maps for five areas using both MSMAll areal-feature–
based surface registration and FNIRT volume alignment. The volume-based
peak probabilities are all lower than the surface-based probabilities for
these example areas. Each volume-based area is shown on a parasagittal slice
through the peak volumetric probability. See SI Appendix, Supplemental
Methods M2 and M3. Data are available at https://balsa.wustl.edu/xK0Z.

Fig. 2. (A) A scatterplot of areal-feature–based surface registration (MSMAll) peak areal probability vs. volume-based registration (FNIRT) peak areal
probability for all 360 areas (180 per hemisphere). (B) A scatterplot of the individual areal signal captured by the group areal definitions (MPMs) (SI Appendix,
Supplemental Methods M6 and M7) at resolutions of 4-mm functional (e.g., legacy fMRI data, in green), 2-mm functional (e.g., HCP-style fMRI, in blue), and
0.7-mm structural (e.g., myelin or ultrahigh field fMRI, in red). In the right scatter plot, gray lines connect the three data points for each area (averaged across
hemispheres, 180 total) showing the degree to which surface-based and volume-based methods benefit from increased resolution (with intermediate res-
olutions lying along the lines). See SI Appendix, Supplemental Methods M2, M3, M6, and M7.
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uncertainty values above 0.5 (9.0%). Note that we expect un-
certainty to reach 0.5 at boundaries between two areas, and to be
even higher at junctions of more than two areas, even if the
registration and classification steps had resulted in nearly perfect
overlap of areas across subjects. The consistently sharp transition
near areal boundaries and the low overall values reflect both the
high quality of areal alignment in this registration and the con-
sistency of the parcellation across individuals. Even in regions
that are typically challenging to align because of high folding
variability (such as the prefrontal cortex) (SI Appendix, Fig. S1),
uncertainty values near 0.5 are almost entirely confined to nar-
row strips along the boundaries between cortical areas. The
largely uniform and low-valued uncertainty pattern, even in
known challenging locations, indicates excellent cross-subject
alignment with MSMAll surface registration (see Fig. 6 for a
comparison with surface registrations based solely on folding).
In the FNIRT volume-based alignment, some low folding var-

iability locations show reasonably good cross-subject agreement,
such as the central sulcus and insula (Fig. 3, red arrows). In these
locations the higher uncertainties are locally restricted to obvious
boundaries between areas, or between the cortex and the cere-
brospinal fluid (CSF) or white matter. However, very little cortex
has uncertainty below 0.2 (only 3.3% of the voxels where cortex is
the most likely tissue), and almost two-thirds of the cortex has

uncertainty above 0.5 (65.5% of voxels where cortex is the most
likely tissue). The higher uncertainty is concentrated in regions of
high cortical folding variability (see also SI Appendix, Fig. S1).
Additionally, the volume-based uncertainty maps contain both
uncertainty in gray matter alignment and uncertainty in areal
alignment (see also SI Appendix, Fig. S2). These high uncertainties
show that volume-based registration failed to align the HCP-
MMP1.0 areas across subjects in many locations. Notably, most
of the very low values in the volume histogram (Fig. 3D) are from
the wide low-uncertainty fringes that are in atlas white matter and
CSF, rather than in locations that are highest probability gray matter
(SI Appendix, Fig. S3). In contrast, the low values of the surface
uncertainty (SI Appendix, Fig. S3, Top Right) occur exclusively inside
gray matter cortical areas. Taken together, these data indicate that
FNIRT-based volume analysis is unable to reliably discrimi-
nate between cortical areas over much of the neocortex.

Volumetric Areal MPMs. Volumetric MPMs (vMPM) for cortical
areas have been reported in other studies (e.g., ref. 28), and we
generated volumetric MPMs for the HCP-MMP1.0 parcellation,
as described in SI Appendix, Supplemental Methods M6. We
found that in regions where the probabilistic gray matter ribbon
has relatively high values and low areal uncertainties, the vMPM
forms a thick continuous ribbon, roughly comparable to average
cortical thickness in these regions. In such regions, volume-based
alignment is not at a major disadvantage to surface-based align-
ment. In contrast, for regions where probabilistic cortical gray
matter is less well aligned and areal uncertainty is consistently high,
the vMPM is thinner than the average cortical thickness. Indeed, in
a few locations there are overt gaps that lack a winning cortical area,
identifying regions where white matter or CSF is more likely than
any single cortical area (see Left side of SI Appendix, Fig. S4). This
contrasts with the accurate alignment of each individual subject’s
parcellation, mapped to the volume using the subject’s surfaces and
displayed on the individual’s T1w volume, which completely over-
laps the map of the individual’s gray matter (see Right side of SI
Appendix, Fig. S4). More generally, the volumetric probabilistic
maps for the exemplar areas shown in Fig. 1 represent the expected
distribution of data generated by these areas in any dataset that has
been registered with FNIRT using the HCP’s FNIRT configuration
without spatial smoothing. The net result is that each area in the
vMPM is much smaller than its corresponding probabilistic map,
such that a large fraction of each area’s group probability (and
therefore signal) will fall outside the vMPM parcel. We quantified
this effect above in Fig. 2 for MSMAll surface-based registration vs.
FNIRT volume-based alignment (see Fig. 8 for additional analysis
approaches). This poor alignment of individual subject cortical
areas to the group MPM is a fundamental problem for using a
volumetric MPM to represent cortical areas. We next demonstrate
that this problem is dramatically exacerbated by the spatial
smoothing that is commonly used in volume-based studies.

Effects of Spatial Smoothing in the Volume and on the Surface.
Smoothing of volumetric data is widely used as a way to reduce
voxel-wise noise, increase measures of statistical significance, and
satisfy statistical assumptions. It is also often pre-sumed to com-
pensate for imperfect alignment of cortical areas across subjects.
Unfortunately, smoothing in the volume mixes data across tissue
compartments and across areal boundaries, including non-
contiguous areas on opposite banks of gyral and sulcal folds (9).
By treating the binary individual-subject parcellations as
patches of idealized signal, we can show the effect of smoothing
on the purity and extent of areal signal (SI Appendix, Supple-
mental Methods M3 and M4). This effect is visible as a reduction
in peak areal probability and an expansion of the volume-based
areal probability maps in Fig. 4, which shows three exemplar
areas after different smoothing amounts. Area 3b (Fig. 4, Top
row) has a relatively tight probabilistic distribution without any

Fig. 3. Areal uncertainty of MSMAll surface-based alignment (A) versus
FNIRT volume-based alignment (C) for the 210V probabilistic cortical areas.
The traditional volume-based approach has substantially greater uncertainty
(greens, yellows, and oranges) than the HCP-style surface-based approach as
seen in the histograms (B and D) as well as the images (A and C). In the
volume-based results, some locations have low uncertainty (purple and
black) and relatively sharp boundaries between areas (red arrows: early
sensorimotor, insular, and inferior temporal cortex), comparable to what is
consistently found on the surface. The volume ROIs that were used to create
this figure were generated by mapping the individuals’ parcellations to the
0.7-mm MNI template space using the indiivduals’ native resolution MNI
space surfaces and the ribbon-mapping method (19). Using 0.7-mm voxels
minimizes the effects of voxel size on the group probability maps, allowing
the effect of alignment to be investigated separately from the effect of
voxel resolution. In practice, typical fMRI resolutions lead to increased signal
mixing between areas and noncortical tissues, for both surface and volume
analysis (see Effect of Acquisition Resolution). See SI Appendix, Supplemental
Methods M2, M3, and M8. Data are available at https://balsa.wustl.edu/PGX1.
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smoothing (Fig. 4, Top, Left), but the peak value is markedly re-
duced and the spatial extent increased with 4-mm full-width half-
maximum (FWHM) volumetric smoothing, deleterious trends that
worsen with 8-mm FWHM smoothing. Areas 55b and LIPv start
out with greater spread in the no-smoothing condition, so the
effects of volumetric smoothing are not as visually dramatic, but
they are nevertheless substantial in both cases. Comparable
levels of surface-based smoothing applied to the same three
MSMAll-registered areas (Fig. 4, Bottom row) show a much
smaller effect, although smoothing still erodes localization.
From the standpoint of cortical localization, volume-based

smoothing substantially erodes the fidelity with which areal as-
signments can be made. This effect is illustrated in the top two
rows of Fig. 5, which shows areal uncertainty maps (Fig. 5, sec-
ond row) and histograms (Fig. 5, Top row) without smoothing
(Fig. 5, Left) and after volumetric smoothing of the group
probability maps by 4-mm FWHM (Fig. 5, Center) and 8-mm
FWHM (Fig. 5, Right), which are commonly used levels of vol-
umetric smoothing in fMRI studies. Over most of the cortical
ribbon, areal uncertainty in the volume-smoothed maps exceeds
0.5 (green/yellow), especially for 8-mm FWHM smoothing, in-
dicating that neuroanatomical identification at the level of in-
dividual cortical areas in the HCP-MMP1.0 parcellation is quite
limited indeed. Surface-based smoothing of the areal probability
maps at 4- and 8-mm FWHM (Fig. 5, Lower rows) also causes
some blurring of areal boundaries. However, unlike volume-
based smoothing, it does not blur across sulci or across tissue
categories, so the overall effects are substantially less deleterious.
See SI Appendix, Fig. S5 for additional volume smoothing levels of
2-, 6-, and 10-mm FWHM that have been reported for fMRI studies

(17). SI Appendix, Fig. S6 shows the additional surface smoothing
level of 15-mm FWHM that has been reported in the literature (29)
and that approaches the areal uncertainty values seen in un-
smoothed volume-based alignment along with the same three levels
of smoothing (4, 8, and 15 mm) with a FreeSurfer alignment.
Volume-based smoothing also shifts the location of maximum

gray matter probability toward the central CSF-filled portion of
sulci and toward the white matter portion of gyri (SI Appendix,
Fig. S7). Features in regions of low folding variability (e.g., in-
sular cortex and the superior temporal gyrus) are sharply defined
without smoothing, as is the boundary between gray and white
matter in such regions. With smoothing, the sulcal fundi are not
only blurry, but the apparent location of the transition between
gray and white matter is substantially shifted, particularly for
high smoothing levels (e.g., 8-mm FWHM).

Comparing Areal Alignment Quality of Different Surface-Based
Registration Methods. We compared the alignment quality of
four different surface-based registration methods (SI Appendix,
Supplemental Methods M4). Fig. 6 shows results for MSMAll
registration (areal-feature–based), MSMSulc (folding–based, with
less distortion than FreeSurfer), FreeSurfer (folding–based), and a
sphere rotation-only rigid alignment (which has only 3 degrees-of-
freedom, whereas spherical warpfields often have thousands) de-
rived from the FreeSurfer registration. Each row in the figure
shows surface probabilistic maps for six representative cortical
areas, areal uncertainty maps, and histograms of uncertainty val-
ues. All three ways of representing the data demonstrate that
MSMAll provides the tightest alignment of the HCP-MMP1.0
probabilistic maps (higher peak probabilities and tighter clus-
tering). MSMSulc is intermediate, although only slightly better
than FreeSurfer, which in turn is slightly better than spherical ro-
tation overall. The spherical rotation method’s alignment is driven

Fig. 4. Effects of volume-based and surface-based smoothing on example
cortical areas. The Top three rows show enlarged sagittal slices of volumetric
probabilistic maps through the maximum probability of three exemplar
areas, before (Left) and after unconstrained volume-based Gaussian
smoothing of 4-mm (Center) or 8-mm (Right) FWHM. In each row, white dots
are in corresponding positions for reference. The Bottom row shows the
same amounts of surface-based Gaussian smoothing applied to the same
three areas after areal-feature–based registration (MSMAll). Areal proba-
bility values decrease in the volume after smoothing substantially more than
on the surface with the same amount in millimeters FWHM of smoothing.
See SI Appendix, Supplemental Methods M3 and M4. Data are available at
https://balsa.wustl.edu/7Blg.

Fig. 5. Comparison of different degrees of smoothing (columns) for both
volume-based (Upper two rows) and surface-based (Lower two rows) ap-
proaches. Both areal uncertainty maps and histograms are shown. These
were computed by smoothing the probability maps, which is equivalent to
smoothing the per subject ROIs before averaging. Smoothing kernels on the
surface clearly have less deleterious effects than smoothing kernels of the
same size in the volume, because surface smoothing avoids smoothing across
sulci or into other tissues. As with Fig. 3, the volume-based histograms have
substantial “low uncertainty” tails that arise from poor alignment of the
cortical ribbon, and from the tail of the Gaussian smoothing kernel within
the white matter and CSF. See SI Appendix, Supplemental Methods M3, M4,
and M8. Data are available at https://balsa.wustl.edu/6MB7.
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primarily by similarities in spherical inflation across subjects. The
peak areal probabilities and degree of areal dispersion found here
for FreeSurfer folding-based registration is comparable to that
reported in previous studies that used FreeSurfer registration with
other parcellations (12, 30, 31). Note that the maximum possible
overlap on the surface (or in the volume) is less than 100% for
some areas because the areal classifier does not detect 100% of
all areas in all subjects and because there are atypical topolo-
gies in some areas in some subjects that prevent any topology
preserving registration from achieving perfect overlap across
subjects (SI Appendix, Supplemental Methods M1).

Effect of Acquisition Resolution. Of the three main acquisition and
analysis choices made in neuroimaging studies that directly im-
pact spatial fidelity (acquisition resolution, method of cross-
subject alignment, and method and amount of smoothing), we
found that commonly used fMRI acquisition resolution choices
have the smallest overall impact (SI Appendix, Supplemental
Methods M2). Fig. 7 compares how surface-based and volume-
based processing is affected by the combination of partial-
volume and volume-based tissue alignment effects, at current
state-of-the-art 3T fMRI acquisition resolutions (2-mm iso-
tropic) and five other simulated resolutions (0.7–4.0 mm). It
shows that partial-volume effects on the surface decrease sub-
stantially (gray matter signal fraction increases) when acquiring
data with smaller voxel sizes. Notably, for surface-based analysis,
the group-average spatial pattern in this measure is largely de-
termined by cortical thickness, and is highly uniform over much
of the cortex. In contrast, the histograms of group-average vol-
ume data are largely unchanged, despite increases in acquisition
resolution, because the inaccuracies of volume-based alignment

largely dominate the measure, showing that traditional volume-based
analyses are unable to fully take advantage of higher-resolution data.
The maximum volume-based group cortical signal fraction also varies
considerably across different regions of the cortex (e.g., between
the central sulcus and superior parietal cortex), suggesting spatial
heterogeneity in statistical power and localization precision for
volume-based analyses.
Although acquisition resolution has the lowest impact among the

three aforementioned processing choices, finer acquisition resolu-
tion, especially below the mean cortical thickness of 2.6 mm, is very
helpful for surface-based studies, which are not limited by volume-
based cross-subject alignment. Higher resolutions (e.g., the 1.6-mm
voxel size for HCP 7T fMRI data) will reduce partial volume
effects and enable more advanced analyses, such as those fo-
cusing on laminar differences within the cortical ribbon (9) (SI
Appendix, Fig. S8). However, such analyses will require technical
advances in MRI acquisition, and optimization of trade-offs
between voxel size, SNR, and acquisition speed.

Summary Localization Measures for Different Registrations and
Smoothing Levels. Fig. 8 provides a valuable summary compari-
son across a variety of approaches, using the aforementioned
peak probability and area capture measures (Fig. 2) for each of
the 360 cortical areas. Notably, this figure also includes a new
strain-regularized MSMAll surface-based registration (20),
which was not used in defining the parcellation or training the
areal classifier, but nevertheless shows very similar performanceFig. 6. Comparison of four surface-based alignments: MSMAll areal-

feature–based registration (Top), MSMSulc folding-based registration (sec-
ond row), FreeSurfer folding-based registration (third row), and a rigid
spherical rotation alignment based on the FreeSurfer registration (Bottom).
The Left column shows six probabilistic areas for each registration approach
with yellow contours representing the areal boundaries from the 210V
MPM. The Center column shows the maps of areal uncertainty (1 minus
maximum probability at each vertex), as in Fig. 3. The Right column shows
the histograms of the uncertainty maps. See SI Appendix, Supplemental
Methods M4. Data are available at https://balsa.wustl.edu/1616.

Fig. 7. The effect of acquisition resolution on the separation of cortical
signal from noncortical signal, for surface-based (Left two columns) and
volume-based (Center two columns) processing. The measure shown is the
group average cortical gray matter fraction of each vertex or voxel. The
Right-most column shows an individual’s (HCP subject 121618) cortical
fraction volumes for the same six resolutions, as an example of the inputs to
the analyses. Smoothing was not applied. The cortical signal fraction
becomes somewhat degraded at the edge of cortex (green voxels) in
many regions, even at 2-mm resolution (even though this is less than the
mean cortical thickness) and is severely degraded (many green and blue
voxels) at traditionally used resolutions between 3 and 4 mm. See SI Ap-
pendix, Supplemental Methods M2. Data are available at https://balsa.
wustl.edu/5gMx.

Coalson et al. PNAS | vol. 115 | no. 27 | E6361

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
9,

 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801582115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801582115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801582115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801582115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801582115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801582115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801582115/-/DCSupplemental
https://balsa.wustl.edu/1616
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801582115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1801582115/-/DCSupplemental
https://balsa.wustl.edu/5gMx
https://balsa.wustl.edu/5gMx


www.manaraa.com

to the original MSMAll. The Left box and whisker plots in Fig. 8
show the peak probabilities of each area, and Fig. 8, Right shows
the MPM-captured area signal measures for the same 10 meth-
ods (using 2-mm resolution partial volume weighting). These
measures give the same ranking to the medians of each method,
which are tabulated in SI Appendix, Table S1. A particularly
important comparison shows that the most commonly used
smoothing level (17) in the traditional approach (FNIRT + 8-mm
FWHM volume smoothing) is only 35% as good as the best
surface-based method (MSMAll) using measures of median peak
areal probability (0.340 vs. 0.967) and median MPM-captured
areal fraction (0.200 vs. 0.564). Comparing the surface-based
analysis using only rigid rotation for spherical alignment to the
volume-based analysis without smoothing reveals the benefits
achieved by simplifying the more challenging cross-subject cortical
registration problem from 3D to 2D and solving the more trac-
table tissue segmentation problem to handle the third dimension.
These conceptual improvements reflect the fundamental ad-
vantage that surface-based approaches have over volume-based
approaches (SI Appendix, Supplemental Discussion D2). Large
amounts of surface-based smoothing (15-mm FWHM) sub-
stantially degrade cortical area localization to levels similar to
volume-based alignment with no smoothing.

Mapping Legacy Group Average Volume Results onto the Surface.
Traditional volume-based analyses often map group-average
volume-based results onto group-average surfaces for visualiza-
tion purposes using, for example, the “average fiducial mapping”
approach (24). While this approach has known limitations, its
accuracy has not previously been analyzed carefully. We used a
modified form of this approach, which we call average surface
mapping (ASM), employing the ribbon-based volume to surface
mapping technique (19) and the group-average MSMAll white
and pial surfaces (SI Appendix, Supplemental Methods M9). In SI
Appendix, Fig. S9 we illustrate the primary pitfall of this ap-
proach: group-average surface contours do not consistently fol-
low the group-average cortical ribbon, particularly in regions of
high folding variability (see SI Appendix, Fig. S9 B, 2). Even when
using folding-based surface registration, topologically incom-
patible folding patterns (e.g., two gyri in some subjects where

there typically is only one) lead to reductions in group-average
cortical surface area that “shrink” the surface toward the di-
rection of folding, as these patterns are unable to be aligned and
therefore result in significant cross-subject variability of coordi-
nates. The folding detail of the group-average surface is further
reduced when using average surfaces from MSMAll-registered
data instead of folding-based alignment because of discrepancies
between function and folds (SI Appendix, Fig. S1). Indeed, the
MSMAll group-average surfaces only show significant folding
detail in locations that have good correspondence between folds
and areas. Thus, mapping group-average volume data onto
group-average surfaces will have additional biases (on top of the
blurring effects from misalignment and smoothing and the bi-
asing effects of smoothing folded cortex shown in SI Appendix,
Fig. S7). Folding-based average surfaces will be only modestly
better that MSMAll surfaces overall.
An alternative approach for mapping group-average volume data

to surfaces is the “multifiducial mapping”method, using anatomical
midthickness (fiducial) surfaces from many individuals as interme-
diates (24). Here we similarly modified this method by using ribbon
mapping and call this “multiple individual mapping” (MIM). The
cortical gray matter fraction map from this approach is smoother,
showing less sensitivity to folding patterns, but also has a lower
overall value, as shown in SI Appendix, Fig. S9 (see SI Appendix, Fig.
S9 figure legend and SI Appendix, Supplemental Methods M2 and
M9). This effect occurs because the tissue misalignment from
FNIRT is applied twice: once in making the volume-based group-
average cortical ribbon and again when mapping the group average
onto the individuals’ surfaces. This method also results in more
mixing between tissue classes, decreasing the cortical contribution to
the surface-mapped values.
These effects are apparent when looking at cortical areas as

well. Indeed, after averaging the 2-mm MNI-space area maps in
the volume, mapping this result onto a large set of individual sur-
faces, and averaging on the surface, the resulting area maps are
dramatically changed relative to the surface-based approach of
mapping each individual subject’s area volumes onto their own
surfaces before averaging (SI Appendix, Fig. S10). These effects
extend to the maximum partial volume maps as well (Fig. 9). In
regions with high folding variability, it is challenging for cortical

Fig. 8. (Left) Box and whisker plots of the peak probability of each area for various SBR methods and for FNIRT volume-based registration, plus the effects of
differing amounts of surface (4-, 8-, and 15-mm FWHM) and volume smoothing (4- and 8-mm FWHM). Less optimal registration methods and greater
smoothing consistently reduce peak areal probability. Volume-based smoothing has the largest impact, followed by volume-based versus surface-based
alignment. The decrease of FreeSurfer compared with MSMSulc is similar in magnitude to that of smoothing MSMAll data by 4-mm FWHM. (Right) MPM
captured area fraction using 2-mm MNI space voxels for the same 10 methods, showing a similar pattern. Notably, the areas that do worse in the new
MSMAllStrain are generally well aligned by folding, whereas the areas that do better in MSMAllStrain have more variability across subjects (the new
MSMAllStrain allows more mild-to-moderate distortions while clamping peak distortions). Red line is the median, box edges are the 25–75 percentiles,
whiskers are 2.7 SDs, and red pluses are outliers beyond 2.7 SDs. See SI Appendix, Supplemental Methods M2–M7.
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areas to be dominant over noncortical tissue classes (white matter in
particular), as shown by the extensive bright yellow regions in the
top two rows for FNIRT + ASM mapping (Fig. 9, column 2) and
their even greater extent for FNIRT + MIM (Fig. 9, column 4).
These effects are further exacerbated by volume-based smoothing
(Fig. 9, columns 3 and 5). Notably, for some cortical areas that are
well aligned by folds, such as those in the insula, the methods are
essentially identical across unsmoothed approaches (although
again, volume-based smoothing is universally deleterious). How-
ever, when analyzing all of the cortex, it is much better to map
individual data onto individual surfaces and align the data on the
surface if one wants to relate it to surface-based data, including
the HCP’s multimodal parcellation.

Discussion
We have systematically explored the impact on spatial localiza-
tion of different acquisition and analysis choices, using a large
dataset in which the cerebral neocortex was individually parcel-
lated using multiple modalities. These data allowed us to
incisively and quantitatively assess the impact of these methodo-
logical choices on spatial localization, not only for the HCP-
MMP1.0 parcellation data but also by extension for a wide range
of neuroimaging studies (both past and future). The analysis in
Fig. 8 summarizes the key results and illustrates the magnitudes
of the effects on spatial localization of different analysis choices.
Areal-feature–based surface registration (MSMAll or MSMAll-
Strain) without smoothing clearly achieves the best localization
of the HCP-MMP1.0 areas. The effect of 4-mm FWHM surface-
based smoothing on MSMAll-registered data are comparable to
the difference between MSMSulc and FreeSurfer folding-based
registrations: modest, but still meaningful. The difference be-
tween registrations based on areal features vs. folding is com-
parable to the difference between folding-based surface registration
and FNIRT volume-based registration, and also similar to the dif-
ference between unsmoothed areal-feature–based surface registra-
tion and more heavily smoothed areal-feature–based surface
registration at 8-mm FWHM. At 15-mm FWHM surface-based
smoothing more substantially degrades MSMAll-aligned cortical
areal spatial localization to a level similar to that of unsmoothed
FNIRT volume-based alignment. The degradation of spatial lo-

calization from moderate (4-mm FWHM) unconstrained volume-
based smoothing is similar to the difference between unsmoothed
volume-based registration vs. areal-feature–based registration, and
the degradation is substantially greater for the more commonly
used 8-mm FWHM volume-based smoothing (17). Importantly,
these effects are cumulative, and one cannot “recover” any spatial
localization that was lost in previous steps (i.e., smoothing does not
ameliorate reductions in spatial localization from registration
methods that do not align areas; it instead makes them worse).
Studies that use extensive smoothing typically do not overtly

justify their chosen amount of smoothing. The most common
smoothing level in the literature is 8-mm FWHM, the default
value in SPM, the most commonly used neuroimaging software
package (17). While spatial smoothing is indeed effective in in-
creasing statistical sensitivity, so too is improving areal alignment
across subjects with surface-based, areal-feature–based registra-
tion. Aligning “like with like” tends to improve z-statistics by
reducing cross-subject variability (see ref. 9), and it also makes
the resulting group maps sharper and more neuroanatomically
interpretable rather than making them blurrier and less in-
terpretable, as smoothing does. Use of areal-feature–based reg-
istration together with minimal smoothing was critical for
creating HCP’s multimodal parcellation at the group level (16).
Permutation-based nonparametric statistical methods [such as
those offered in the PALM software, https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/PALM (32)] can be used without smoothing, or with small
amounts of smoothing, in contrast to popular parametric meth-
ods, and also work well with HCP-style CIFTI or parcellated
data. The statistical assumptions required by Gaussian random-
field theory, which have been assumed to be satisfied by using
large smoothing kernels, were recently shown to be unsatisfied in
some cases, leading to increased false positives (33).
Surface-based representations of cortical data are more visually

informative than volume-based depictions, insofar as the convo-
luted sheet-like cerebral cortex is best inspected on a 2D visual
model, often using inflation or flattening to expose cortex that is
buried inside sulci. Modest surface-based smoothing (e.g., 4-mm
FWHM) can increase statistical sensitivity and make maps more
visually appealing at the cost of a modest decrease in spatial res-
olution (e.g., reducing the discriminability of thin features, such as

Fig. 9. Comparison of the surface-based maximum partial-volume map to the maps produced after volume-based analysis with ASM or MIM, and 4-mm
FWHM volume-based smoothing before ASM and MIM. The figure uses the same methods as SI Appendix, Fig. S10, and then uses the maximum fraction to
label the surface vertices. In the Upper two rows, bright yellow is the white matter label, and bright orange is the CSF label (occurring in only a few small
patches). Substantial regions of the cortex are not separated into cortical areas after volume-based analysis and MIM, and ASM shows significant stripes
where the gyral crowns are decapitated. On the other hand, in regions of lower folding variability and variability of areas vs. folds, such as the insula, volume-
based methods reproduce the parcellation found with the surface-based approach, particularly if smoothing is not used. See SI Appendix, Supplemental
Methods M2 and M9. Data are available at https://balsa.wustl.edu/nKvx.
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area 3a, or fine details, such as somatotopic variations in myelin
content in areas 4 or 3b). Parcellation provides a more powerful
alternative to spatial smoothing for increasing statistical sensitivity
(16). Parcel-constrained averaging can be considered a neuro-
anatomically informed method of smoothing (averaging within
cortical areas defined using multiple modalities) that also greatly re-
duces the number of statistical comparisons.† Rather than improving
alignment, spatial smoothing further erodes the ability to localize
brain structure, function, or connectivity in neuroimaging studies.
The statistical sensitivity benefits of spatial smoothing come from
reducing the effects of unstructured noise in the data and real
cross-subject variability, not from alignment improvements. Notably,
other fields concerned with image analysis generally strive to reduce
rather than increase blurring of their images (e.g., astronomy uses
space telescopes and advanced adaptive optics to counteract the
blurring effects of the earth’s atmosphere). Additionally, the use of
statistical thresholds [which are less reproducible than effect-size
maps and spatial gradients (9)], and the tendency to summarize
activation clusters as single 3D coordinates induce further spatial
localization uncertainty in the traditional volume-based literature.
Taken together, these limitations make accurate comparisons
between the traditional neuroimaging literature and the HCP’s
multimodal parcellation very challenging indeed.
Our findings are also unlikely to be the result of circularity

(i.e., that MSMAll was intrinsically favored because it had been
used in generating the HCP-MMP1.0 parcellation used here to
evaluate different acquisition and analysis methods) for the
reasons discussed in SI Appendix, Supplemental Discussion D1.
Briefly, we used a spatially agnostic classifier, analyzed an inde-
pendent dataset, and replicated the findings with a different
version of the registration algorithm that produces a nonidentical
solution. Indeed any circularity concerns would be limited to the
improvements of MSMAll over and above MSMSulc, which ac-
counts for only ∼25% of the threefold improvement of MSMAll
over FNIRT with 8-mm smoothing (∼50% is related to not doing
the smoothing and another ∼25% to surface instead of volume
alignment). MSMAll has previously been shown to provide ma-
jor improvements in independent task fMRI data that were not
used in the registration (20, 21) over MSMSulc. Thus, we believe
any circularity effect is small, if it exists at all, and even in a worst
case it would not affect our main conclusions.
Our analysis focused on FMRIB Software Library’s (FSL)

FNIRT algorithm and alignment to the MNI152 FNIRT non-
linear atlas template because that is how the HCP data were
aligned volumetrically. Numerous other algorithms for volu-
metric alignment are available, and numerous template volumes
are used as targets for registration to an atlas. However, we
believe that no volume-based registration algorithm that en-
forces smoothly varying and anatomically plausible amounts of
distortion will have better cortical alignment performance than
the areal-feature–based surface registration algorithm shown
here, even if areal features were used in the volume.‡ Volume-
based registration of incompatible folding patterns and of in-

compatible relationships between areas and folds is a profoundly
more challenging problem. Surface-based registration achieves a
correspondence in 2D on a sphere, which allows spherical reg-
istration deformations to ignore incompatible or misleading
folding patterns and therefore is unable to mix cortex with white
matter or CSF. In contrast, nonlinear volumetric registration is
instead defined in terms of anatomical deformations, and must
explicitly deal with fundamental folding issues, like two gyri in some
subjects where most have only one (see SI Appendix, Supplemental
Discussion D2 for further discussion of alternative volume-based
registrations and the fundamental differences between surface and
volume-based registration).
On the other hand, even better correspondence across subjects

than the current areal-feature–based surface registration may be
attainable using improved algorithms within the MSM frame-
work (20), increasing the amount of allowed distortion, or other
topology-preserving approaches (e.g., ref. 40). Methods that do
not enforce topology preservation, such as individual subject
parcellation (16, 41, 42) or hyperalignment (34, 43) can perform
even better. Surface based studies, such as those that have used
FreeSurfer alignment to the “fsaverage” atlas, can be profitably
compared with the HCP-MMP1.0 parcellation (SI Appendix,
Supplemental Discussion D3). Indeed they are approximately
three-quarters of the way toward an HCP-style analysis (Fig. 8).
Legacy volume-based studies could be reanalyzed using surface-
based methods for accurate comparison with modern maps of
the cerebral cortex (e.g., using tools such as CIFTIFY that are
expressly designed for this purpose; https://github.com/edickie/
ciftify). Finally, it is worth remembering that while we believe the
HCP’s MMP1.0 is the best available map of human cerebral
cortical areas, we expect future refinements as more data be-
come available and more investigators tackle the cortical par-
cellation problem using semiautomated, HCP-style approaches
(SI Appendix, Supplemental Discussion D4).

Concluding Remarks
For decades, human neuroimaging studies have been dominated
by an analysis paradigm consisting of volumetric alignment of
cortical data coupled with unconstrained volumetric spatial
smoothing. Unfortunately, this volumetric alignment is inaccu-
rate for most of human neocortex, and results in statistically
significant blobs whose precise relationship to cortical areas is
uncertain. These blobs are then represented as 3D volumetric
coordinates and assigned to Brodmann areas and coarse folding-
related landmarks. Such results generally lack a close resem-
blance to the fine-grained mosaic of areas that populate the
cortical sheet and generate the functional signals measured by
these studies (9). Cortical surface-based approaches provide
powerful alternatives that have gained momentum since their
introduction two decades ago, especially for studies of the visual
cortex (e.g., ref. 13), but widespread adoption of surface-based
approaches has been slow (9, 26), hampering progress in un-
derstanding cortical areas outside the visual system. Factors
contributing to this unfortunate situation include: the desire to
replicate or compare with existing studies that used the tradi-
tional volume-based approach; the relative lack of “turn-key”
tools for running a surface-based analysis (but see ref. 19); the
learning curve for adopting surface-based analysis methods;
unawareness of the problems with traditional volume-based
analysis; and uncertainty or even skepticism as to how much of
a difference these methodological choices make.
The present study speaks mainly to the last two points, as we

have used the HCP’s multimodal parcellation to quantify the
benefits of aligning data on surfaces instead of in volumes, using
areal features instead of folds for this alignment, and minimiz-
ing spatial smoothing. These choices have a large impact on
spatial localization. Moreover, analysis software and preprocessing
pipelines for using “grayordinate-based” analysis and visualization

†Parcel-based averaging is appropriate for many analyses, but of course not for all. For
example, studies of fine-scale cortical topography (e.g., refs. 34–36) depend on preser-
vation of small spatial details and are best analyzed using minimally smoothed data.
However, neurobiological interpretation of topographic gradients can benefit from re-
lating the gradients to nearby cortical areas.

‡That said, we feel volumetric registration of subcortical structures remains important (for
example, the HCP uses the FNIRT nonlinear registration algorithm for subcortical align-
ment). Furthermore, the use of fiber orientation information may improve white matter
fiber-tract alignment in the same way that areal features improve cortical areal align-
ment (37, 38). Additionally, the use of gentler volume registration algorithms optimized
to maximize functional alignment would be beneficial (SI Appendix, Figs. S11 and S12),
together with including surface-based constraints, which may also help resolve some
ambiguities in the volume (39).
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are now freely available, such as the HCP pipelines available
on github (https://github.com/Washington-University/Pipelines),
ConnectomeWorkbench, growing support in FSL, and tools such
as CIFTIFY for processing legacy data (https://github.com/
edickie/ciftify). FreeSurfer has also provided its own surface-
based analysis streams for nearly two decades (18). We hope
that these approaches will receive increasing support and
adoption in other tools, such as AFNI (SUMA), BrainVoyager, and
SPM (CAT).
Rather than continuing with “business as usual” using the

traditional volume-based approach, we encourage neuroimaging
investigators to reevaluate the methods that they are using. An
overreliance on measures of statistical significance to assess
scientific validity of brain-imaging studies and an underappre-
ciation of neuroanatomical fundamentals has contributed to re-
cent controversies in neuroimaging (e.g., ref. 33). The issues
considered in this and preceding papers (9) are arguably even
more problematic, given the vast resources poured into tens of
thousands of neuroimaging studies that have yielded blurry re-
sults that would require reanalysis to enable accurate compari-
sons with the sharper picture that is emerging of the functional
and structural organization of the cerebral cortex. The future

impact of these legacy studies is significantly limited by the dif-
ficulty in accurately comparing them to modern surface-based
maps of the human cerebral cortex.
Widespread adoption of approaches to data acquisition, analysis,

and visualization that preserve high resolution and enable precise
spatial localization is vital for accurately relating brain structure,
function, and connectivity to well-defined neuroanatomy. Progress
in this direction will benefit from recognition and consideration of
these issues by investigators, reviewers, journal editors, and funding
agencies alike. Accurate relation of brain-mapping results to brain
areas can accelerate progress in understanding how the brain works
in health and disease.
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